Toric Degenerations of Gr(2, n) and Gr(3, 6) via Plabic Graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

6 Toric Degenerations of Git Quotients , Chow Quotients

The moduli spaceM0,n plays important roles in algebraic geometry and theoretical physics. Yet, some basic properties of M 0,n still remain open. For example, M0,n is rational and nearly toric (that is, it contains a toric variety as a Zariski open subset), but it is not a toric variety itself starting from dimension 2 (n ≥ 5). So, a basic question is: Can it be degenerated flatly to a projectiv...

متن کامل

Toric Degenerations of Spherical Varieties

We prove that any affine, resp. polarized projective, spherical variety admits a flat degeneration to an affine, resp. polarized projective, toric variety. Motivated by Mirror Symmetry, we give conditions for the limit toric variety to be a Gorenstein Fano, and provide many examples. We also provide an explanation for the limits as boundary points of the moduli space of stable pairs whose exist...

متن کامل

Toric Degenerations of Weight Varieties and Applications

We show that a weight variety, which is a quotient of a flag variety by the maximal torus, admits a flat degeneration to a toric variety. In particular, we show that the moduli spaces of spatial polygons degenerate to polarized toric varieties with the moment polytopes defined by the lengths of their diagonals. We extend these results to more general Flaschka-Millson hamiltonians on the quotien...

متن کامل

Toric Degenerations of Bott-samelson Varieties

We study Bott-Samelson varieties for the group GLn(C), their toric degenerations and standard monomial type bases for their homogeneous coordinate rings. A 3-dimensional example is described in detail.

متن کامل

Toric Degenerations and Batyrev-borisov Duality

In [5], Bernd Siebert and I introduced the notion of a toric degeneration of CalabiYau varieties. The initial goal is to produce a method of constructing mirror pairs which combines the Strominger-Yau-Zaslow (differential geometric) approach to mirror symmetry and the older Batyrev-Borisov (algebro-geometric) approach to mirror symmetry. Our belief is that in doing so we will produce a new, muc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Combinatorics

سال: 2018

ISSN: 0218-0006,0219-3094

DOI: 10.1007/s00026-018-0395-z